1 (1) 円周角の定理により $x = \angle BAC = 50^{\circ}$ $y = 2 \angle BAC = 2 \times 50^{\circ} = 100^{\circ}$

(2) 右の図と円周角の定理により $x = \frac{1}{2} \times 260^{\circ} = 130^{\circ}$

(3) 円周角の定理により

$$\angle AOB = 2 \angle ACB = 2 \times 30^{\circ} = 60^{\circ}$$

$$\angle ADB = \angle OAD + \angle AOD$$

= $\angle OAD + \angle AOB$

$$= x + 60^{\circ}$$
 ······ ①

△BCD において、内角と外角の関係から

$$\angle ADB = \angle DBC + \angle DCB = 50^{\circ} + 30^{\circ} = 80^{\circ} \quad \cdots \quad \bigcirc$$

①, ② \hbar^3 δ $x + 60^\circ = 80^\circ$

 $ttbb x = 20^{\circ}$

(4) 円周角の定理により ∠ACD=∠ABD=30° △OCD は OC=OD の二等辺三角形であるから

$$x = \angle OCD = 30^{\circ}$$

ACは円の直径であるから ∠ADC=90°

よって、△ACD において

$$y = 180^{\circ} - (\angle ACD + \angle ADC) = 180^{\circ} - (30^{\circ} + 90^{\circ}) = 60^{\circ}$$

(5) BD は円の直径であるから、円周角の定理により $\angle BAD = 90^{\circ}$

また,円周角の定理により ∠ABD=∠ACD=50° よって、△ABD において

$$x = 180^{\circ} - (\angle BAD + \angle ABD)$$

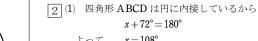
= $180^{\circ} - (90^{\circ} + 50^{\circ}) = 40^{\circ}$

また、円周角の定理により $y=2\angle BAC=2\times 20^{\circ}=40^{\circ}$

(6) 円周角の定理により

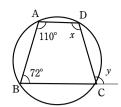
$$\angle ACB = \angle ADB = 40^{\circ}$$
 ①

 $\angle AOB = 2 \angle ADB = 2 \times 40^{\circ} = 80^{\circ}$


 $\triangle OAB$ は OA = OB の二等辺三角形であるから

$$\angle\,O\,A\,B = \frac{1}{2}(180^{\circ} - \angle\,A\,O\,B) = \frac{1}{2}(180^{\circ} - 80^{\circ}) = 50^{\circ}$$

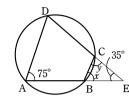
よって ∠CAB=∠OAC+∠OAB


$$=50^{\circ}+50^{\circ}=100^{\circ}$$
 ②

①, ② $\hbar \sim x = 180^{\circ} - (\angle ACB + \angle CAB) = 180^{\circ} - (40^{\circ} + 100^{\circ}) = 40^{\circ}$

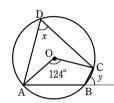
よって
$$x=108^{\circ}$$

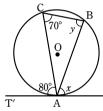
また $y=\angle BAD=110^{\circ}$

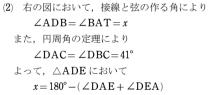

 $x + 72^{\circ} = 180^{\circ}$

(2) 四角形 ABCD は円に内接しているから $v = \angle BAD = 75^{\circ}$

また、△BECにおいて

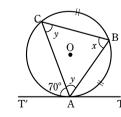

$$x = 180^{\circ} - (y + \angle BEC) = 180^{\circ} - (75^{\circ} + 35^{\circ}) = 70^{\circ}$$


(3) 円周角の定理により


$$x = \frac{1}{2} \angle BOD = \frac{1}{2} \times 124^{\circ} = 62^{\circ}$$

また、四角形 ABCD は円に内接しているから $v = \angle BAD = 62^{\circ}$

[3](1) 右の図において、接線と弦の作る角により $x = \angle ACB = 70^{\circ}$ $v = \angle CAT' = 80^{\circ}$



 $=180^{\circ}-(41^{\circ}+103^{\circ})=36^{\circ}$

 $\overrightarrow{AB} = \overrightarrow{BC}$ であるから $\angle BCA = \angle CAB = v$ よって、 $\triangle ABC$ において $x+y+y=180^{\circ}$ これと①から 70°+2v=180° したがって $y=55^{\circ}$

 $\boxed{4}$ (1) $\angle x$ は \overrightarrow{BC} に対する円周角であるから $\angle x = \angle BDC = 54^{\circ}$

$$\angle y$$
は \widehat{BC} に対する中心角であるから
 $\angle y = 2\angle BDC = 2 \times 54^{\circ} = 108^{\circ}$

(2) $\angle x$ は \widehat{CD} に対する円周角であるから $\angle x = \angle CBD = 37^{\circ}$

$$\angle y$$
は \widehat{AB} に対する円周角であるから $\angle y = \angle ADB = 28^\circ$

(3) ∠ADCは半円の弧に対する円周角であるから

よって $\angle x = 90^{\circ} - 61^{\circ} = 29^{\circ}$

∠DAB は半円の弧に対する円周角であるから

 $\angle DAB = 90^{\circ}$

△ABD において

$$\angle v = 180^{\circ} - (90^{\circ} + 61^{\circ}) = 29^{\circ}$$

(5) (1) $\angle x$ は \widehat{AD} に対する円周角であるから

$$\angle x = \angle ACD = 70^{\circ}$$

△ABE の内角と外角について

$$\angle y = 110^{\circ} - \angle x = 110^{\circ} - 70^{\circ} = 40^{\circ}$$

(2) $\angle x$ は \widehat{BCD} に対する中心角であるから

$$\angle x = 2 \angle BAD = 2 \times 81^{\circ} = 162^{\circ}$$

BAD に対する中心角は

$$360^{\circ} - \angle x = 360^{\circ} - 162^{\circ} = 198^{\circ}$$

∠vは BAD に対する円周角であるから

$$\angle y = \frac{1}{2} \times 198^{\circ} = 99^{\circ}$$

(3) $\angle BOC$ は \widehat{BC} に対する中心角であるから

$$\angle x = 2 \angle BAC = 2 \times 58^{\circ} = 116^{\circ}$$

 $OB = OC \ \tau b \delta h \delta$ $\angle OCB = \angle v$

$$2 \angle y = 180^{\circ} - \angle x$$

$$2 \angle y = 180^{\circ} - 116^{\circ}$$

$$\angle y = 32^{\circ}$$

(4) $\angle x$ は \widehat{BC} に対する円周角であるから

$$\angle x = \frac{1}{2} \angle BOC = \frac{1}{2} \times 66^{\circ} = 33^{\circ}$$

△DCO の内角と外角について

$$\angle BDC = 66^{\circ} + 22^{\circ} = 88^{\circ}$$

△DABの内角と外角について

$$\angle x + \angle y = 88^{\circ}$$

$$33^{\circ} + \angle y = 88^{\circ}$$

$$\angle y = 55^{\circ}$$

(5) $\angle BDC = \angle BAC = 48^{\circ}$

∠ADC は半円の弧に対する円周角であるから

$$\angle ADC = 90^{\circ}$$

 $\pm 2 < 2 < 48^{\circ} = 42^{\circ}$

AC と BD の交点を E とすると、△DEC の内角と外角について

$$\angle y + 48^{\circ} = 110^{\circ}$$

よって ∠ v=62°

(6) FとCを結ぶ。

∠BFCは BC に対する円周角であるから

$$\angle BFC = \angle BAC = 41^{\circ}$$

 $\angle x$ は \widehat{CD} に対する円周角であるから

$$\angle x = \angle CFD = 33^{\circ}$$

6 (1) 1つの円の弧の長さは、円周角の大きさに比例するから

$$34^{\circ}: \angle x = 2:3$$

 $2 \angle x = 34^{\circ} \times 3$

 $\angle x = 51^{\circ}$

(2) 等しい弧に対する円周角は等しいから

$$\angle x = \angle ACB = 50^{\circ}$$

また ∠ADB=∠ACB=50°

△ABD において、三角形の内角の和は 180° であるから

$$\angle x + 46^{\circ} + \angle y + 50^{\circ} = 180^{\circ}$$

$$50^{\circ} + 46^{\circ} + \angle y + 50^{\circ} = 180^{\circ}$$

 $\angle y = 34^{\circ}$

7 (1) 四角形 **ABCD** は円に内接しているから

$$\angle x = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

 $\angle y = 110^{\circ}$

(2) △BCD において

 $\angle x = 180^{\circ} - (68^{\circ} + 32^{\circ}) = 80^{\circ}$

四角形 ABCD は円に内接しているから

$$\angle y = 180^{\circ} - \angle x = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

(3) 四角形 ABCD は円に内接しているから

$$\angle CDA = 180^{\circ} - 94^{\circ} = 86^{\circ}$$

よって $\angle x = 86^{\circ} - 30^{\circ} = 56^{\circ}$

∠BAD=90°であるから

$$\angle y = 180^{\circ} - (90^{\circ} + 56^{\circ}) = 34^{\circ}$$

(4) 円周角と中心角の関係より

$$\angle BCD = \frac{1}{2} \times 150^{\circ} = 75^{\circ}$$

四角形ABCD は円に内接しているから

$$\angle x = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

 \triangle OBC, \triangle OCD は二等辺三角形であるから

 \angle OCB=35°, \angle OCD= \angle y

よって $\angle y + 35^\circ = 75^\circ$

 $\angle y = 75^{\circ} - 35^{\circ} = 40^{\circ}$

8 (1) 四角形 **ABCD** は円に内接しているから

 $\angle x = 71^{\circ}$

△ABE において

 $\angle y = 180^{\circ} - (71^{\circ} + 68^{\circ}) = 41^{\circ}$

(2) △BECの内角と外角について

 $\angle x + 40^{\circ} = 95^{\circ}$

 $\angle x = 95^{\circ} - 40^{\circ} = 55^{\circ}$

四角形 ABCD は円に内接しているから

 $\angle BAD = \angle x = 55^{\circ}$

△ABF において

 $\angle y = 180^{\circ} - (55^{\circ} + 95^{\circ}) = 30^{\circ}$

9 (1) 接線と弦のつくる角の定理により

 $\angle x = 51^{\circ}$, $\angle y = 64^{\circ}$

 $(2) \quad \angle x = 52^{\circ}$

BC は直径であるから ∠CAB=90°

△ABC において

 $\angle y = 180^{\circ} - (52^{\circ} + 90^{\circ}) = 38^{\circ}$

 $(3) \quad \angle x = 107^{\circ}$

△BDA の内角と外角について

$$\angle y + 72^{\circ} = 107^{\circ}$$

 $\angle y = 35^{\circ}$

10 (1) 四角形 ABCD は円に内接しているから

$$\angle DAB = 180^{\circ} - 102^{\circ} = 78^{\circ}$$

また ∠ADB=45°

よって、△ABD において

$$\angle x = 180^{\circ} - (78^{\circ} + 45^{\circ}) = 57^{\circ}$$

(2) $\angle ABC = 52^{\circ}$

BA = BC より、 $\triangle BCA$ は二等辺三角形である。

よって $\angle x = (180^{\circ} - 52^{\circ}) \div 2 = 64^{\circ}$

 $(3) \quad \angle BAD = 28^{\circ}$

△ADC において

$$\angle CAD = 180^{\circ} - (28^{\circ} + 40^{\circ}) = 112^{\circ}$$